333 research outputs found

    Quantitative bispectra from multifield inflation

    Full text link
    After simplifying and improving the non-Gaussian formalism we developed in previous work, we derive a quantitative expression for the three-point correlator (bispectrum) of the curvature perturbation in general multiple-field inflation models. Our result describes the evolution of non-Gaussianity on superhorizon scales caused by the nonlinear influence of isocurvature perturbations on the adiabatic perturbation during inflation. We then study a simple quadratic two-field potential and find that when slow roll breaks down and the field trajectory changes direction in field space, the non-Gaussianity can become large. However, for the simple models studied to date, the magnitude of this non-Gaussianity decays away after the isocurvature mode is converted into the adiabatic mode.Comment: 7 pages, 1 figure. v4: Added remarks on momentum dependence, minor textual changes, matches published versio

    Simple route to non-Gaussianity in inflation

    Full text link
    We present a simple way to calculate non-Gaussianity in inflation using fully non-linear equations on long wavelengths with stochastic sources to take into account the short-wavelength quantum fluctuations. Our formalism includes both scalar metric and matter perturbations, combining them into variables which are invariant under changes of time slicing in the long-wavelength limit. We illustrate this method with a perturbative calculation in the single-field slow-roll case. We also introduce a convenient choice of variables to graphically present the full momentum dependence of the three-point correlator.Comment: 6 pages, 2 figures. v2: Updated formalism to version described in astro-ph/0504508, leading to dropping of one unnecessary approximation. Final results not significantly changed. Extended discussion of calculation and added graphical presentation of full momentum dependence. References corrected and added. v3: Final version, only small textual change

    Non-linear inflationary perturbations

    Full text link
    We present a method by which cosmological perturbations can be quantitatively studied in single and multi-field inflationary models beyond linear perturbation theory. A non-linear generalization of the gauge-invariant Sasaki-Mukhanov variables is used in a long-wavelength approximation. These generalized variables remain invariant under time slicing changes on long wavelengths. The equations they obey are relatively simple and can be formulated for a number of time slicing choices. Initial conditions are set after horizon crossing and the subsequent evolution is fully non-linear. We briefly discuss how these methods can be implemented numerically in the study of non-Gaussian signatures from specific inflationary models.Comment: 10 pages, replaced to match JCAP versio

    Quantum inflaton, primordial metric perturbations and CMB fluctuations

    Get PDF
    We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current WMAP observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of m^2/H^2 where m is the inflaton mass and H the Hubble constant at horizon crossing. This turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it.Comment: LaTeX, 8 pages, no figures. To appear in the Proceedings of the ERE 2006 Meeting, Journal of Physics: Conference Serie

    Cosmic Acceleration Driven by Mirage Inhomogeneities

    Full text link
    A cosmological model based on an inhomogeneous D3-brane moving in an AdS_5 X S_5 bulk is introduced. Although there is no special points in the bulk, the brane Universe has a center and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the center, giving a possible geometrical origin for the smallness of a present-day cosmological constant. Besides, if our model is considered as an alternative of early time acceleration, it is shown that the early stage accelerating phase ends in a dust dominated FRW homogeneous Universe. Mirage-driven acceleration thus provides a dark matter component for the brane Universe final state. We finally show that the model fulfills the current constraints on inhomogeneities.Comment: 14 pages, 1 figure, IOP style. v2, changed style, minor corrections, references added, version accepted in Class. Quant. Gra

    Large non-Gaussianity in multiple-field inflation

    Full text link
    We investigate non-Gaussianity in general multiple-field inflation using the formalism we developed in earlier papers. We use a perturbative expansion of the non-linear equations to calculate the three-point correlator of the curvature perturbation analytically. We derive a general expression that involves only a time integral over background and linear perturbation quantities. We work out this expression explicitly for the two-field slow-roll case, and find that non-Gaussianity can be orders of magnitude larger than in the single-field case. In particular, the bispectrum divided by the square of the power spectrum can easily be of O(1-10), depending on the model. Our result also shows the explicit momentum dependence of the bispectrum. This conclusion of large non-Gaussianity is confirmed in a semi-analytic slow-roll investigation of a simple quadratic two-field model.Comment: 21 pages, 9 figures. v4: Minor textual changes to match published version. In addition, and superseding the published version, a small error in X and X-bar has been corrected; no significant changes to the final results. Note that an extended (no slow roll) numerical treatment superseding section V.D is available in astro-ph/051104
    • …
    corecore